For Full Access to All Resources Please Log In or Register


  • Mechanics of Rib Deformation Observations and Monitoring in Australian Coal Mines - Yvette Heritage

    The risk of fatalities from rib failure is still prevalent in the coal mining industry. This risk has prompted further research to be conducted on rib deformation in order to understand the mechanisms of rib failure, with the long-term objective being to improve rib support design. This paper presents the results of ACARP research project C25057, which investigated the mechanics and drivers of rib failure. The results of rib deformation monitoring at three different mines in Australia provides rib deformation characteristics for overburden depths ranging from 160 m to 530 m. Monitoring includes deformation during development drivage conditions and during the longwall retreat abutment stress environment. The rib deformation monitoring covered three different seams: the Goonyella Middle Seam, Ulan Seam, and Bulli Seam in the Bowen Basin, Western Coalfield, and Southern Coalfield, respectively. The observed mechanisms driving the rib deformation ranged from bedding shear failure along weak claystone bands to vertical shear fractures to kinematic failures driven by shear failure dilation. The variation in mechanisms of rib failure, together with the seemingly consistent method of rib support design, prompts the question: What exactly is the role of rib support? Mechanics-of-Rib-Deformation-Observations-and-Monitoring-in-Australian-Coal-Mines-Yvette-Heritage-2018.pdf6.1 MB
  • Development of the ANZI strain cell for three dimensional in situ stress determinations in deep exploration boreholes - Ken Mills - Jesse Puller

    The Australia, New Zealand Inflatable (ANZI) strain cell is an instrument used to determine the three dimensional in situ stresses with a high level of confidence, through the overcoring method of stress relief. The ANZI cell has been used for over three decades at numerous sites around the world, typically in short inclined boreholes drilled from underground mines. Technical advances during the last decade have seen the ANZI cell deployed and overcored in increasingly deeper surface exploration boreholes. Recent development of a downhole electronic data logger, a wireline enabled drilling system and an instrument deployment system has greatly simplified the process of obtaining three dimensional overcore measurements at depth. This paper describes the ANZI strain cell, its operation and recent development for overcoring in exploration boreholes. The capability to deploy ANZI strain cells in exploration boreholes represents a significant breakthrough for the design of underground mines and underground excavations generally. Being able to obtain high confidence measurements of the in situ stresses at the planning stage of any underground construction activity provides the opportunity to take advantage of these stresses. Not only does it become possible to protect key infrastructure by locating it away from areas of stress concentration, advantage can be taken of the major stresses to promote caving through appropriate design. Development-of-the-ANZI-strain-cell-for-three-dimensional-in-situ-stress-determinations-in-deep-exploration-boreholes-K.Mills-J.Puller-2017.pdf887 KB
  • A Combined 2D and 3D Modelling Approach to Provide Adequate Roof Support in Complex 3D Excavations - Yvette Heritage

    Traditional methods for assessing effective roof support can be difficult to apply to complex 3D excavations. Through worked examples, this paper illustrates the successful approach of combined 2D and 3D numerical modelling to understand the mechanisms of rock failure for unique excavation geometries. The modelling approach provides adequate roof support recommendations for complex 3D excavations in Australian coal mines. A-Combined-2D-and-3D-Modelling-Approach-to-Provide-Adequate-Roof-Support-in-Complex-3D-Excavations-Y.Heritage-2015.pdf2 MB
  • Monitoring of Ground Movements at Sandy Creek Waterfall and Implications for Understanding the Mechanics of Valley Closure Movements - Ken Mills

    BHP Billiton-Illawarra Coal operates Dendrobium Mine in an area 10-20km west-northwest of Wollongong in New South Wales, Australia. The mine recently completed mining the Wongawilli Seam in Area 3A adjacent to a natural rock overhang known as Sandy Creek Waterfall. Illawarra Coal undertook to protect the waterfall and the section of Sandy Creek immediately upstream of the waterfall from the effects of adjacent longwall mining using an innovative management process and an array of very high resolution monitoring systems. This paper describes the results of the high resolution monitoring systems and the implications of these results for general understanding of natural and mining induced ground movements around valleys.

    The program of monitoring conducted at Sandy Creek Waterfall measured closure, stress changes, microseismic activity and shear movements adjacent to the waterfall during mining of Longwalls 6, 7 and 8. These measurements provided insights into the mechanics of both mining induced valley closure and natural erosion processes. At the completion of Longwall 8, the monitoring strategy and the management decisions based on this monitoring have been effective in protecting the overhanging sandstone rock structure that forms Sandy Creek Waterfall and the upstream section of Sandy Creek, as required by the NSW Department of Planning and Infrastructure.

    The measurements and observations made at Sandy Creek Waterfall and the interpretation placed on these results are considered to provide a coherent understanding of the relatively complex deformation mechanics at this site. These mechanics are consistent with measurements and observations made at other sites. Monitoring-of-Ground-Movements-at-Sandy-Creek-Waterfall-and-Implications-for-Understanding-the-Mechanics-of-Valley-Closure-Movements-K.Mills-2014.pdf3.4 MB
  • Determination of Load Transfer Characteristics of Gloved Resin Bolts from Laboratory and In-Situ Field Testing - Stuart MacGregor - Published 2005

    Resin based grouts are the main form of rock bolt anchorage in the underground coal industry in Australia and New Zealand. To be effective, the system requires the mixing of the catalyst and mastic components of the resin, as well as shredding of the laminate cartridge that contains the resin.

    An unknown measure is the load transfer characteristics of a bolt where the resin is well mixed but remains encased in the cartridge (gloved). Laboratory and in situ field investigations have been undertaken to quantify the performance loss due to mixed gloved bolts. This work showed repeatable results, indicating serious performance loss of the gloved and mixed system, with load transfer approximately 10-15% of a non-gloved system (MacGregor, 2004).

    The in situ testing has demonstrated the relationship between the adhesion qualities of the resin and the mechanical interlock generated by radial confinement with progressively increasing tensile load. Effective load transfer is defined by the ability of the system to sustain shear stress on the bolt hole wall. Determination-of-Load-Transfer-Characteristics-of-Gloved-Resin-Bolts-from-Laboratory-and-In-Situ-Field-Testing-S.MacGregor.pdf1.3 MB
  • Numerical Modelling of Floor Deformation Mode at Longwall Face - Winton Gale - Published 2005

    High stress concentrations ahead of the longwall face often exceed the floor strength and induce fractures in the floor strata. While concentrations of the vertical stress alone induces fractures in the roof ahead of the longwall face, combinations of the vertical and horizontal stress appear to be the dominant factor in formation of floor fractures. These fractures develop in response to the triaxial stress conditions exceeding rock strength. In the immediate floor, fractures appear to form at frequent intervals dipping under the goaf at a steep angle while more complex bedding shear appears to dominate the floor failure at a greater depth. In a stronger floor the fractures appear to occur less frequently. If weak bedding planes are present in the floor, shear failure along these beddings can occur far ahead of the longwall face. The post failure displacements along the fractures and the formation of new fracture surfaces often occur in response to the stress relief, bending or buckling of thin bedded layers in the floor. The post failure displacements can be
    large and may interfere with mining operations.

    This paper presents the computational approach using FLAC to model the development of fractures in the floor strata. The model uses programmable “fish routines” that allow simulation of failure modes that may occur in response to the changing stress field ahead of the longwall face. Continuous monitoring of the two dimensional stress field is used to predict the fracture types and the direction at which the fractures may propagate. The fractures are then simulated using FLAC ubiqitous elements that allow to assign the joint direction and the reduction of joint strength in the direction of the calculated fracture. The stress state is tested continuously during the execution of the program and fractures are simulated when the stress exceeds the rock strength. This procedure can simulate the progressive development of fractures during the longwall advance. The method is particularly helpful to estimate the type of fractures and their frequency that depend on the strength of floor strata and stress build up during a longwall advance. The depth of floor failure can have a significant influence on the gas release from the floor strata in gaseous mines. The type of fractures and the fracture orientation that is computed can be presented in the movie files to view the development of fractures in the floor during the longwall advance. Numerical-Modelling-of-Floor-Deformation-Mode-at-Longwall-Face-W.Gale.pdf1.5 MB
  • Computer Simulation of Ground Behaviour and Rock Bolt Interaction at Emerald Mine - Winton Gale - Published 2004

    A collaborative project between RAG Emerald Mine, NIOSH, and SCT Operations was conducted to investigate ground behaviour, reinforcement performance, and stress redistribution in a coal mine entry subjected to a severe horizontal stress concentration. Field measurements indicated that the stresses applied to the study site nearly doubled during longwall mining, resulting in roof deformations extending to a height of 4.8 m (16 ft) above the entry.

    This paper focuses on the computer simulation that was undertaken to provide more insight into the roof behaviour and rock bolt interaction during mining. The model’s input rock properties were derived from extensive laboratory testing, and the model itself simulated a broad range of failure mechanisms. The effects of different bolt patterns on roadway behaviour were evaluated. Comparison between the model results and the field measurements indicated that that the model effectively simulated the critical elements of the actual roadway’s behaviour. With the confidence gained, the model was used as a baseline for additional simulations that evaluated the expected performance of alternative roof support systems. The study will also provide a benchmark data set for future applications of numerical modelling to U.S. coal underground mining. Computer-Simulation-of-Ground-Behaviour-and-Rock-Bolt-Interaction-at-Emerald-Mine-Winton-Gale.pdf697 KB
  • Experience in Computer Simulation of Caving Rock Fracture and Fluid Flow in Longwall Panels - Winton Gale - Published 2002

    Recent advances in computer simulation together with field measurements of caving and microseismic activity about longwall panels, has allowed a much better understanding of the caving process and the variability due to geology. Research between SCT Operations and CSIRO Division of Exploration and Mining has initiated new methods of computational modelling predicting various caving patterns and strata failure far ahead of the longwall face.

    The rock fracture distribution and the caving characteristics of a range of strata sections have been simulated by computer methods. The computer simulation of strata behaviour includes coupled fluid and mechanical behaviour. Validation studies of the method were addressed together with case studies. The method allows the simulation of longwall support behaviour and fluid pressure distributions about longwall panels under various geological conditions. The system also allows a prediction of the monitoring data, which is best suited to give an early warning of weighting events or signal various key caving characteristics. Experience-in-Computer-Simulation-of-Caving-Rock-Fracture-and-Fluid-Flow-in-Longwall-Panels-W.Gale.pdf4 MB
  • A Method of Determining Longwall Abutment Load Distributions for Roadway and Pillar Design - Ken Mills

    This paper describes a method to determine abutment loads on longwall chain pillars and adjacent roadways. The method is based on: observation of subsidence behaviour, field measurements of abutment load distributions, and considerations of total overburden load about one or more longwall panels.

    Surface subsidence data is used to deduce how far the overburden strata can transfer overburden weight and the total abutment load required to be distributed for any particular depth and longwall geometry. To be of practical use in roadway and pillar design, the shape of the abutment load distribution is also required as a function of distance from the goaf edge. Direct field measurement using high quality, three dimensional stress monitoring instruments is considered to provide the most reliable method of determining the magnitude and shape of the abutment load distribution at various stages of longwall mining.

    The abutment load distribution determined at any one site by field measurement can be scaled horizontally to account for changes in overburden depth and vertically to account for changes in total abutment load. Thus, within the limitations of extrapolating data from one site to another, the abutment load distribution can be estimated for different depth and longwall geometries. Pillar loading and the vertical stress acting on adjacent roadways can then be determined from the measured load distributions, or scaled versions thereof, for any particular stage of mining, longwall geometry or depth of overburden. A-Method-of-Determining-Longwall-Abutment-Load-Distributions-for-Roadway-and-Pillar-Design-K.Mills-2001.pdf1.2 MB
  • Combining Modern Assessment Methods to Improve Understanding of Longwall Geomechanics - Winton Gale - Published 1998

    Ongoing, collaborative research between CSIRO's Exploration and Mining and Strata Control Technology has resulted in a better understanding of rock failure mechanisms around longwall extraction. Failure has occurred further ahead of the retreating face than predicted by conventional longwall geomechanics theory. In some cases significant failure has been detected several hundred metres ahead of the face position with demonstrated influences of minor geological discontinuities. Shear, rather than tensile failure has been the predominant failure mechanism in the environments monitored. Validating technologies of microseismic monitoring and new face monitoring techniques have assisted the development of predictive 2D computational modelling tools. The demonstrated 3D consequences of failure has assisted in the ongoing direction of the project to further investigate these effects. Combining-modern-assessment-methods-to-improve-understanding-of-longwall-geomechanics-W.Gale.pdf2.9 MB
  • Coal Pillar Design Issues in Longwall Mining - Winton Gale - Published 1998

    Coal pillar design has been based on generalised formulae of the strength of the coal in a pillar and experience in localised situations. Stress measurements above and in coal pillars indicate that the actual strength and deformation of pillars varies much more than predicted by formulae. This variation is due to failure of strata surrounding coal. The pillar strength and deformation of the adjacent roadways is a function of failure in the coal and the strata about the coal.

    When the pillar is viewed as a system in which failure also occurs in the strata, rather than the coal only, the wide range of pillar strength characteristics found in the UK, USA, South Africa, Australia, China, Japan and other countries are simply variations due to different strata-coal combinations and not different coal strengths. This paper presents the measured range of pillar strength characteristics and explains the reasons. Methods to design pillar layouts with regard to the potential strength variations due to the strata strength characteristics surrounding the seam are presented. Coal-Pillar-Design-Issues-in-Longwall-Mining-Winton-Gale.pdf3.3 MB
  • Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling - Winton Gale

    This paper presents several new methods to help interpretation and understanding of ground stress. The methods are based on data from 239 stress measurements conducted in the virgin ground in NSW and Queensland mines and computational models simulating large scale faulted ground behaviour. The underground stress regime plays an important role in mining profitability and safety however, understanding of the stress tensor is often difficult due to its mathematical complexities and non-intuitive behaviour.

    The aim of this study is to explain stress distribution in faulted ground, its origin and propose several methods of stress interpretation. Major findings presented in this study include: increase of maximum horizontal stress with depth based on underground measurements and numerical simulation of faulted ground, affect of faults on ground stress, normalisation technique that allows comparison of lateral stress magnitudes in rock of different stiffness, ‘Strain Tectonic Factor’ concept and its value in understanding stress components and its affect on rock strength. Methods-of-Interpreting-Ground-Stress-Based-on-Underground-Stress-Measurements-and-Numerical-Modelling-W.Gale.pdf429 KB
  • Successful Use of a Stress Relief Roadway at Appin Colliery - Winton Gale

    High horizontal stress levels can lead to extensive roadway deformation requiring expensive secondary support to ensure stability; this is particularly the case with longwall installation faces. Longwall installation roadways are a critical construction within coal mines. The use of a purpose built ‘Stress Relief Roadway’ to minimise roof deformation in the nearby longwall installation roadway, by reducing stress impacts has been undertaken at Appin Colliery – BHP Billiton Illawarra Coal. Its use led to significant cost and operational benefits. This paper outlines the process used; from identifying horizontal stress as an issue, as well as generating computer models through the various options and culminating in ground monitoring of the constructed roadways to the successful start of the longwall panel. Successful-Use-of-a-Stress-Relief-Roadway-at-Appin-Colliery-W.Gale.pdf581 KB
  • Impact of Longwall Width on Overburden Behaviour - Ken Mills

    The longwall panels at Clarence Colliery have experienced intermittent sudden weightings on the face that have caused some production delays. These weightings have typically been more severe on the wider faces. A program of surface subsidence and extensometer monitoring was undertaken above Longwalls 4 and 5 to investigate the behaviour of the overburden strata during longwall extraction on two faces of different widths.

    The monitoring indicated that a dome shaped zone of large downward movement extends up into the overburden strata to a height equal to about the panel width. A major strata unit between 50 m and 70 m above the coal seam influences the behaviour of the overburden strata and may be a factor in the observed sudden loading of longwall face supporLo;. Downward movement of this major unit appears to concentrate on vertical fractures. Increased loading on the face supports could then be expected. The downward movement of this major unit appears to be more significant in the overburden behaviour above the 200 m wide longwall compared to the 160 m wide longwall face Impact-of-longwall-width-on-overburden-behaviour-K.Mills.pdf1.8 MB
  • The Application of Field and Computer Methods for Pillar Design in Weak Ground - Winton Gale

    This paper describes the use of strain gauge based borehole instruments to monitor stress changes associated with the creation and extension of hydraulic fractures in massive rock strata at Northparkes Mine in Australia and Salvador Mine in Chile.

    This work was conducted as part of the International Caving Study ICSII. These instruments proved very sensitive to the stress changes induced by the hydraulic fractures close to the fracture plane. Analysis of the stress changes observed allowed the fracture orientation and non-symmetric fracture growth to be constrained sufficiently that a clearer insight into fracture behaviour could be obtained at both sites, particularly when combined with other observations. Recognition of the elastic stress reorientation about an opening mode hydraulic fracture has proved to be an important element in the interpretation of stress change monitoring data.

    The nature of the stress reorientation is useful in discriminating between opening and shearing mode fracture growth. A technique of identifying a range of possible solutions of fracture orientation and non-symmetric fracture growth consistent with the stress changes observed on multiple instruments has been developed. Unique definition of fracture orientation from the stress change instruments is possible if the instruments are sufficiently distributed relative to the hydraulic fracture plane. The-Application-of-Field-and-Computer-Methods-for-Pillar-Design-in-Weak-Ground-W.Gale.pdf2.4 MB
  • Experience in the Application of Computer Modelling to Coal Mine Roadway Design in Weak Rock - Winton Gale

    A summary of the weak rock failure process is presented to demonstrate the application of computer modelling to coal mine roadway design. The weak rock failure mechanism was chosen because its discovery required a design tool (modelling) that was not bound by a preconception of the results. Modelling was used to decode the relative influence of the geological and geotechnical factors.

    It is emphasised that computer simulation techniques are best applied in a practical sense if accompanied by field measurement and observation. The field measurements are used as both a means of validating the initial model and to confirm that actual events are within design expectation. Experience-in-the-Application-of-Computer-Modelling-to-Coal-Mine-Roadway-Design-in-Weak-Rock-W.Gale.pdf1.2 MB
  • Experience in Modelling Longwall Support Behaviour - Winton Gale

    Recent advances in computer simulations of strata caving mechanisms and the response of longwall supports to strata behaviour has allowed much better understanding of longwall support requirements. The computational method allows the simulation of longwall support behaviour under a wide range of geological conditions with emphasis on comparing different support geometries and support loading conditions. This paper presents results of the computational trials to simulate various longwall support geometries including the comparison of the two leg and the four leg support options, the premature caving of strata at the canopy rear and its influence on roof falls at the longwall face.

    The rock fracture distribution and caving characteristics of a wide range of strata geologies has a significant influence on the longwall support behaviour. Underground measurements and computer simulations were undertaken to investigate the caving characteristics of strata and some of the common problems typically encountered at the longwall face. The computer simulations highlight the importance of the longwall support geometry and location of the applied roof loads to minimise potential problems leading to major roof falls at the longwall face. Experience-in-Modelling-Longwall-Support-Behaviour-W.Gale.pdf1.9 MB
  • Subsidence Mechanisms about Longwall Panels - Ken Mills

    This paper presents a summary of the components of subsidence about longwall panels that have been observed and inferred from subsidence and other monitoring. The essentially independent components that make up the total subsidence observed on the surface are isolated and discussed. The combination of these components are shown to generate the range of profiles observed at surface level as subsidence.

    Monitoring of displacements within the overburden section provide another dimension to the understanding of subsidence behaviour. The concept of an arch shaped zone of large downward movement over individual longwall goafs is developed in the context of observations of subsidence movements. This concept provides a framework within which to better understand sag subsidence and elastic compression of chain pillars in multiple longwall panels at depth. Subsidence-Mechanisms-about-Longwall-Panels-K.Mills.pdf120 KB
  • Successful Construction of a Complex 3D Excavation Using 2D and 3D Modelling - Yvette Heritage

    Austar Coal Mine (Austar) successfully constructed an underground coal storage bin at a deep mine in challenging conditions. SCT Operations (SCT) was involved in various geotechnical assessments related to the bin excavation including vertical separation of the bin drift and underlying seam roadways, bin top area roof design and support and seam roof support at the bin base. Traditional
    methods used for determining support recommendations can be difficult to apply to complex three dimensional excavations. SCT used a combination of two dimensional and three dimensional numerical modelling using FLAC 2D and FLAC 3D to understand the key drivers and modes of failure about the bin excavation.The staged process of construction and an interactive approach between Austar and SCT enabled review and validation of the modelling process to occur throughout the construction. A key lesson from this program of work is that there is value in an interactive approach whereby site monitoring and review of model properties during construction provides early validation of the model. This ensures that natural geological variability, which can have significant impacts on rock failure and deformation, can be incorporated into the model as an ongoing process. Successful-Construction-of-a-Complex-3D-Excavation-Using-2D-and-3D-Modelling-Y.Heritage.pdf1.7 MB
  • Instrumentation Monitoring at an Underground Mine to Establish Failure Mechanisms, Confirm Numerical Modelling and Determine Safe Working Conditions - Stuart MacGregor

    A number of potential failure modes were identified by observation and numerical modelling in the underground operation at Telfer Gold Mine. In order to gain a better understanding of the mechanisms of failure an instrumentation programme was designed. Monitoring methods included closure monitoring using tape, rod and sonic probe extensometers, stress monitoring, reinforcement monitoring with strain gauges, prism monitoring in the open pit and observation using a borehole camera.

    The results from the monitoring instrumentation established local and regional failure mechanisms with greater certainty. The information allowed mining methods, extraction sequences and reinforcement requirements to be reliably designed, using numerical modelling as a tool.

    Instrumentation was also installed to determine the ongoing stability of excavations which allowed safe working conditions to be identified throughout the mine. The aim of each type of instrumentation method is presented along with the interpretation of the monitoring results. The practical implications of each set of results are discussed and a cost breakdown for all the instrumentation types is included. Instrumentation-Monitoring-at-an-Underground-Mine-to-Establish-Failure-Mechanisms-Confirm-Numerical-Modelling-and-Determine-Safe-Working-Conditions-S.MacGregor.pdf2.2 MB
Sign up for the latest white papers and product news