• ROCK FRACTURE & HYDRAULIC CONDUCTIVITY
  • Ken Mills

For Full Access to All Resources Please Log In or Register

 

  • Monitoring and Measuring Hydraulic Fracturing Growth During Preconditioning of a Roof Rock over a Coal Longwall Panel - Rob Jeffrey - Ken Mills

    Narrabri Coal Operations is longwall mining coal directly below a 15 to 20 m thick conglomerate sequence expected to be capable of producing a windblast upon first caving at longwall startup and producing periodic weighting during regular mining. Site characterisation and field trials were undertaken to evaluate hydraulic fracturing as a method to precondition the conglomerate strata sufficiently to promote normal caving behaviour at longwall startup and reduce the severity of periodic weighting. This paper presents the results of the trials and illustrates the effectiveness of hydraulic fracturing as a preconditioning technique.

    Initial work was directed at determining if hydraulic fractures were able to be grown with a horizontal orientation, which would allow efficient preconditioning of the rock mass by placing a number of fractures at different depths through the conglomerate from vertical boreholes drilled from the surface. The measurements and trials were designed to determine the in situ principal stresses, the hydraulic fracture orientation and growth rate, and whether the fractures could be extended as essentially parallel fractures to a radius of at least 30 m. Overcore stress measurements were used to determine the orientation and magnitude of the in situ principal stresses, a surface tiltmeter array was used to determine the hydraulic fracture orientation, and stress change monitoring, pressure monitoring and temperature logging in offset boreholes were used to establish the fracture growth rate, lateral extent, and that the fractures maintained their initial spacing to a radial distance of greater than 30 metres. The measurements and trials demonstrated that horizontal fractures could be extended parallel to one another to a distance of 30 to 50 m by injection of 5,000 to 15,000 litres of water at a rate of 400 to 500 L/min. Results from the trial allowed a preconditioning plan to be developed and successfully implemented. Monitoring-and-Measuring-Hydraulic-Fracturing-Growth-During-Preconditioning-of-a-Roof-Rock-over-a-Coal-Longwall-Panel-R.Jeffrey-K.Mills-2018.pdf1.8 MB
  • Experience of Monitoring the Interaction between Ground Deformations and Groundwater above an Extracted Longwall Panel - Ken Mills - Ben Blacka

    This paper presents the results of a field measurement program aimed to measure the interaction of groundwater and mining induced ground deformations above a sub-critical width longwall panel in a series of panels, two decades after mining. Three cored holes were drilled from the surface above the centre of a longwall panel down towards the highly fractured zone known to exist just about seam level. Observations including lithology, jointing, mining induced fracturing, groundwater flows and measurements of various hydrogeological parameters were made while the boreholes were open. The holes were then fully grouted and vibrating wire piezometers installed to measure the equilibrium piezometric profile.

    The results of this program provide correlation between the experience of ground deformation monitoring and the experience of groundwater monitoring. These results provide a basis to develop groundwater models to faithfully represent the interactions between groundwater and mining induced ground deformations. Experience-of-Monitoring-the-Interaction-between-Ground-Deformations-and-Groundwater-above-an-Extracted-Longwall-Panel-K.Mills-B.Blacka-2017.pdf1.9 MB
  • In-Situ Stress Measurements and Stress Change Monitoring to Monitor Overburden Caving Behaviour and Hydraulic Fracture Pre-Conditioning - Jesse Puller, Ken Mills, Rob Jeffrey

    A coal mine in New South Wales is longwall mining 300 m wide panels at a depth of 160–180 m directly below a 16–20 m thick conglomerate strata. As part of a strategy to use hydraulic fracturing to manage
    potential windblast and periodic caving hazards associated with these conglomerate strata, the in-situ stresses in the conglomerate were measured using ANZI strain cells and the overcoring method of stress relief. Changes in stress associated with abutment loading and placement of hydraulic fractures were also measured using ANZI strain cells installed from the surface and from underground. Overcore stress measurements have indicated that the vertical stress is the lowest principal stress so that hydraulic fractures
    placed ahead of mining form horizontally and so provide effective pre-conditioning to promote caving of the conglomerate strata. Monitoring of stress changes in the overburden strata during longwall retreat was undertaken at two different locations at the mine. The monitoring indicated stress changes were evident 150 m ahead of the longwall face and abutment loading reached a maximum increase of about 7.5 MPa. The stresses ahead of mining change gradually with distance to the approaching longwall and in a direction consistent with the horizontal in-situ stresses. There was no evidence in the stress change monitoring results to indicate significant cyclical forward abutment loading ahead of the face. The forward abutment load determined from the stress change monitoring is consistent with the weight of overburden
    strata overhanging the goaf indicated by subsidence monitoring. In-Situ-Stress-Measurements-and-Stress-Change-Monitoring-to-Monitor-Overburden-Caving-Behaviour-and-Hydraulic-Fracture-Pre-Conditioning-Jesse-Puller-Ken-Mills-Rob-Jeffrey-2015.pdf1.8 MB
  • Developing Methods for Placing Sand Propped Hydraulic Fractures for Gas Drainage in the Bulli Seam - Ken Mills - Published 2006

    BHP Billiton Illawarra Coal is seeking ways to significantly increase gas capture rates from in seam drilling programs in its underground coal mining operations. Hydraulic Fracture Technology (HFT), a joint venture between SCT Operations Pty Ltd and CSIRO Petroleum, is working with Illawarra Coal to develop the capability to enhance gas drainage rates in the Bulli Seam using sand-propped hydraulic fracturing based on HFT’s experience at Dartbrook Mine where gas drainage rates were increased by 5 to 180 times. One of the principal challenges for implementing sand-propped hydraulic fracturing in the Bulli Seam is the high vertical stresses that cause borehole breakout in horizontal holes drilled in coal. Borehole breakout effectively precludes the use of open hole straddle packers which are a convenient tool for placing multiple sand-propped hydraulic fractures in in-seam holes.

    Results of an initial six week trial undertaken at Douglas Project pit-bottom are described, which is aimed to developing the capability to install, grout and perforate casing so that straddle packers can be used for sand-propped hydraulic fracturing in overstressed boreholes. The primary goals of the pitbottom trial at Douglas were to confirm that horizontal boreholes in Bulli coal at 500 m overburden depth are overstressed and unsuitable for use of open hole straddle packers, and to establish a method for installing, cementing and slotting casing so that straddle packers can be used to place hydraulic fractures. Both these goals were successfully achieved. Developing-Methods-for-Placing-Sand-Propped-Hydraulic-Fractures-for-Gas-Drainage-in-the-Bulli-Seam-K.Mills.pdf738 KB
  • Applications of Hydraulic Fracturing to Control Caving Events in Coal Mines - The Moonee Experience - Ken Mills

    Hydraulic fracturing involves the injection of high pressure fluid into a rock mass to form one or more fractures. Fractures are oriented perpendicular to the lowest principal stress acting at the time of injection. Hydraulic fractures can be extended considerable distances from one or more boreholes oriented in any convenient direction. The technique offers a method to control caving related phenomena such as inducement of caving, control of periodic weighting, initiation of first goaf fall, and preconditioning of longwall takeoff areas. This paper describes the successful application of hydraulic fracturing to control windblast hazard at Moonee Colliery and opportunities that emerge for other applications.

    Moonee Colliery extracts the lower 3m of the Great Northern seam using a 100m wide longwall panel. A 35m thick conglomerate strata immediately overlying the seam is able to temporarily bridge across the panel so that the goaf does not immediately cave.
    When the conglomerate strata does eventually fall, the bottom 10-15m collapses more or less as a single mass over an area 50-300m long by the full 100m panel width. The windblasts generated by these events present a very significant hazard to men working on the longwall face.

    Hydraulic fracturing has been successfully introduced at Moonee Colliery as a method to induce caving events “on demand”. The men are evacuated from the longwall face area prior to commencement of the hydraulic fracture treatment. After a treatment typically
    lasting 15 minutes to 2 hours, a goaf fall event is usually initiated and mining can be recommenced with the windblast hazard eliminated.

    The work at Moonee is believed to be the first successful use of hydraulic fracturing to induce caving events in Australia. Infusing water to weaken rock and small-scale hydraulic fracturing, ahead of or over longwall panels, has been tried previously in Australia and South Africa. Infusion is currently being used in China. Hydraulic fracturing has also been used in Poland to condition the roof over new panels and to modify the stiffness of rock around mine openings to reduce rock burst hazards. The application of hydraulic fracturing, described in this paper, to control the timing of caving events has not
    been used before.

    The technique also offers the potential to control periodic weighting events, induce caving at longwall startup, precondition pre-driven longwall take-off roads and take control of caving in other situations where it would be desirable to induce the goaf to cave. Application-of-Hydraulic-Fracturing-to-Control-Caving-Events-in-Coal-Mines-Ken-Mills-2002.pdf1.1 MB
  • Remote High Resolution Stress Change Monitoring of Hydraulic Fractures - Ken Mills - Rob Jeffrey

    This paper describes the use of strain gauge based borehole instruments to monitor stress changes associated with the creation and extension of hydraulic fractures in massive rock strata at Northparkes Mine in Australia and Salvador Mine in Chile. This work was conducted as part of the International Caving Study ICSII.

    These instruments proved very sensitive to the stress changes induced by the hydraulic fractures close to the fracture plane. Analysis of the stress changes observed allowed the fracture orientation and non-symmetric fracture growth to be constrained sufficiently that a clearer insight into fracture behaviour could be obtained at both sites, particularly when combined with other observations. Recognition of the elastic stress reorientation about an opening mode hydraulic fracture has proved to be an important element in the interpretation of stress change monitoring data.

    The nature of the stress reorientation is useful in discriminating between opening and shearing mode fracture growth. A technique of identifying a range of possible solutions of fracture orientation and non-symmetric fracture growth consistent with the stress changes observed on multiple instruments has been developed. Unique definition of fracture orientation from the stress change instruments is possible if the instruments are sufficiently distributed relative to the hydraulic fracture plane. Remote-High-Resolution-Stress-Change-Monitoring-of-Hydraulic-Fractures-K.Mills-R.Jeffrey.pdf1 MB
  • Hydraulic Fracturing to Induce Caving: Fracture Model Development and Comparison to Field Data - Rob Jeffrey - Ken Mills

    Hydraulic fracturing is used at Moonee Colliery to induce caving as part of the routine operation of this longwall mine. Measurements undertaken to successfully introduce hydraulic fracturing to Moonee and pressure records routinely obtained from each treatment provide a unique opportunity to develop and test a new model of hydraulic fracture growth near a free surface. This paper presents the results of the comparison for several fracture treatments, demonstrating that the model is able to match the treatment data. Hydraulic-Fracturing-to-Induce-Caving-Fracture-Model-Development-Comparison-to-Field-Data-R.Jeffrey-K.Mills.pdf395 KB
  • Hydraulic Fracturing Applied to Inducing Longwall Coal Mine Goaf Falls - Rob Jeffrey - Ken Mills

    This paper describes the first successful use of hydraulic fracturing to induce a goaf event and control the timing of caving events in Australia. Hydraulic fractures are initiated at 7 to 10m above the bottom of a thick conglomerate roof and, because of the low vertical stress magnitude relative to the other two principal stressed, grow as horizontal fractures. The fractures extend radially outward from the injection borehole into the rock until a goaf fall occurs. Hydraulic fracturing has provided a means to control the timing of windblast events and thereby significantly improved safety. The successful implementation of hydraulic fracturing at Moonee Colliery to control the timing of goaf events has enabled the mine to continue operating. Hydraulic-Fracturing-Applied-to-Induce-Longwall-Coal-Mine-Goaf-Falls-R.Jeffrey-K.Mills.pdf240 KB
  • Successful Application of Hydraulic Fracturing to Control Windblasts at Moonee Colliery - Ken Mills

    This paper describes the first successful use of hydraulic fracturing to induce caving events “on demand” in Australia. Moonee Colliery operate a longwall immediately below a thick conglomerate strata. This strata temporarily bridges across the extracted longwall panel to create a large area of standing goaf. When this standing goaf eventually collapses, the windblast generated presents a significant hazard to men working on and around the longwall face.

    Hydraulic fracturing has been successfully introduced to take control of the timing of these caving events so as to eliminate the risk of windblast injury. The longwall face area is completely evacuated during the treatment. Water is pumped into an injection point located in the conglomerate strata above the standing goaf.
    A horizontal fracture is generated and grows outward from the injection point, separating the conglomerate strata below the fracture horizon. At some point the strata can no longer span and a goaf fall is initiated. After a treatment, mining can be recommenced with the windblast hazard eliminated. Successful-Application-of-Hydraulic-Fracturing-to-Control-Windblasts-at-Moonee-Colliery-K.Mills.pdf221 KB
Sign up for the latest white papers and product news