• Applications of Hydraulic Fracturing to Control Caving Events in Coal Mines - The Moonee Experience

    Hydraulic fracturing involves the injection of high pressure fluid into a rock mass to form one or more fractures. Fractures are oriented perpendicular to the lowest principal stress acting at the time of injection. Hydraulic fractures can be extended considerable distances from one or more boreholes oriented in any convenient direction. The technique offers a method to control caving related phenomena such as inducement of caving, control of periodic weighting, initiation of first goaf fall, and preconditioning of longwall takeoff areas. This paper describes the successful application of hydraulic fracturing to control windblast hazard at Moonee Colliery and opportunities that emerge for other applications.

    Moonee Colliery extracts the lower 3m of the Great Northern seam using a 100m wide longwall panel. A 35m thick conglomerate strata immediately overlying the seam is able to temporarily bridge across the panel so that the goaf does not immediately cave.
    When the conglomerate strata does eventually fall, the bottom 10-15m collapses more or less as a single mass over an area 50-300m long by the full 100m panel width. The windblasts generated by these events present a very significant hazard to men working on the longwall face.

    Hydraulic fracturing has been successfully introduced at Moonee Colliery as a method to induce caving events “on demand”. The men are evacuated from the longwall face area prior to commencement of the hydraulic fracture treatment. After a treatment typically
    lasting 15 minutes to 2 hours, a goaf fall event is usually initiated and mining can be recommenced with the windblast hazard eliminated.

    The work at Moonee is believed to be the first successful use of hydraulic fracturing to induce caving events in Australia. Infusing water to weaken rock and small-scale hydraulic fracturing, ahead of or over longwall panels, has been tried previously in Australia and South Africa. Infusion is currently being used in China. Hydraulic fracturing has also been used in Poland to condition the roof over new panels and to modify the stiffness of rock around mine openings to reduce rock burst hazards. The application of hydraulic fracturing, described in this paper, to control the timing of caving events has not
    been used before.

    The technique also offers the potential to control periodic weighting events, induce caving at longwall startup, precondition pre-driven longwall take-off roads and take control of caving in other situations where it would be desirable to induce the goaf to cave. 3rd-International-Underground-Coal-Conference-IUCC-Application-of-Hydraulic-Fracturing-to-Control-Caving-Events-in-Coal-Mines.pdf1.1 MB
  • An Investigation into Underground Mine Interaction with Overlying Aquifers Huntly, East Mine, New Zealand

    In recent years, Huntly East Mine has operated at a depth range of approximately 100 m to 220 m below a Quaternary aged clay, sand and silt aquifer that is connected to a nearby large river system (Waikato River). A key issue for mine planning and environmental management has been the development of mine design criteria to allow efficient mining of the reserves and to maintain the integrity of the aquifer.

    A case study and back analysis at Huntly East Mine is presented, which investigates the overburden conductivity and the impacts caused by mining-induced caving. The case study includes: i. computer modelling of the mine geometry, caving and overburden fracture networks created; ii. field investigation to develop an engineering geological model of the overburden within the goaf to validate the goaf geometry as defined by the computer generated model; iii. in situ field measurement of overburden conductivity in the pre- and post-mining condition; iv. interference testing across the goaf to determine the level of interconnectivity; and v. measured water pressure profiles above the mine. An-Investigation-into-Underground-Mine-Interaction-with-Overlying-Aquifers-Huntly-East-Mine-New-Zealand.pdf822 KB
  • Analytical Procedure to Estimate the Horizontal Anisotropy of Hydraulic Conductivity in Coal Seams

    The horizontal hydraulic conductivity anisotropy of coal seams is a controlling parameter for designing gas drainage boreholes. The ratio between the maximum and minimum horizontal hydraulic conductivity (RkH-kh) and the orientation of maximum horizontal conductivity defines this anisotropy in horizontal plane.

    This paper presents a new analytical procedure based on the field stress data and geometrical properties of coal cleats to calculate these two parameters. The application of this procedure for a real case in Eastern of Australia resulted in an average ratio of 20.9 for RkH-kh and orientation of NE for maximum horizontal conductivity. The comparison between these results with the measured values validated the accuracy of proposed procedure to estimate the anisotropy of horizontal hydraulic conductivity of coal seams. Analytical-Procedure-to-Estimate-the-Horizontal-Anisotropy-of-Hydraulic-Conductivity-in-Coal-Seams.pdf377 KB
  • Application of Computer Modelling in the Understanding of Caving and Induced Hydraulic Conudctivity About Longwall Panels

    Computer modelling is being used to simulate rock fracture, caving and stress redistribution about longwall panels with increasing confidence. The models are being assessed against field monitoring and have significantly increased the understanding of caving mechanics within the overburden. This paper discusses the modelling approach and provides some examples of its application to overburden damage and induced hydraulic conductivity. Computer models used in this study simulate the fracture process in the geological units throughout the overburden. Analysis of the mining induced fracture patterns and in situ joint patterns allows an estimation of the hydraulic conductivity within the overburden. The cubic flow relationship has been used in the examples presented. Application-of-Computer-Modelling-in-the-Understanding-of-Caving-and-Induced-Hydraulic-Conudctivity-About-Longwall-Panels.pdf271 KB
  • Coal Pillar Design Issues in Longwall Mining

    Coal pillar design has been based on generalised formulae of the strength of the coal in a pillar and experience in localised situations. Stress measurements above and in coal pillars indicate that the actual strength and deformation of pillars varies much more than predicted by formulae. This variation is due to failure of strata surrounding coal. The pillar strength and deformation of the adjacent roadways is a function of failure in the coal and the strata about the coal.

    When the pillar is viewed as a system in which failure also occurs in the strata, rather than the coal only, the wide range of pillar strength characteristics found in the UK, USA, South Africa, Australia, China, Japan and other countries are simply variations due to different strata-coal combinations and not different coal strengths. This paper presents the measured range of pillar strength characteristics and explains the reasons. Methods to design pillar layouts with regard to the potential strength variations due to the strata strength characteristics surrounding the seam are presented. Coal-pillar-design-issues-in-longwall-mining.pdf3.3 MB
  • Combining Modern Assessment Methods to Improve Understanding of Longwall Geomechanics

    Ongoing, collaborative research between CSIRO's Exploration and Mining and Strata Control Technology has resulted in a better understanding of rock failure mechanisms around longwall extraction. Failure has occurred further ahead of the retreating face than predicted by conventional longwall geomechanics theory. In some cases significant failure has been detected several hundred metres ahead of the face position with demonstrated influences of minor geological discontinuities. Shear, rather than tensile failure has been the predominant failure mechanism in the environments monitored. Validating technologies of microseismic monitoring and new face monitoring techniques have assisted the development of predictive 2D computational modelling tools. The demonstrated 3D consequences of failure has assisted in the ongoing direction of the project to further investigate these effects. Combining-modern-assessment-methods-to-improve-understanding-of-longwall-geomechanics.pdf2.9 MB
  • Deformability Modulus of Jointed Rocks, Limitation of Empirical Methods and Introducing a New Analytical Approach

    Deformability modulus of jointed rocks is a key parameter for stability analysis of underground structures by numerical modelling techniques. Intact rock strength, rock mass blockiness (shape and size of rock blocks), surface condition of discontinuities (shear strength of discontinuities) and confining stress level are the key parameters controlling deformability of jointed rocks. Considering cost and limitation of field measurements to determine deformability modulus, empirical equations which were mostly developed based on rock mass classifications are too common in practice. All well-known empirical formulations dismissed the impact of stress on deformability modulus. Therefore, these equations result in the same value for a rock at different stress fields.

    This paper discusses this issue in more detail and highlights shortcomings of existing formulations. Finally it presents an extension to analytical techniques to determine the deformability modulus of jointed rocks by a combination of the geometrical properties of discontinuities and elastic modulus of intact rock. In this extension, the effect of confining stress was incorporated in the formulation to improve its reliability. Deformability-Modulus-of-Jointed-Rocks-Limitation-of-Empirical-M.pdf943 KB
  • Developing Methods for Placing Sand Propped Hydraulic Fractures for Gas Drainage in the Bulli Seam

    BHP Billiton Illawarra Coal is seeking ways to significantly increase gas capture rates from in seam drilling programs in its underground coal mining operations. Hydraulic Fracture Technology (HFT), a joint venture between SCT Operations Pty Ltd and CSIRO Petroleum, is working with Illawarra Coal to develop the capability to enhance gas drainage rates in the Bulli Seam using sand-propped hydraulic fracturing based on HFT’s experience at Dartbrook Mine where gas drainage rates were increased by 5 to 180 times. One of the principal challenges for implementing sand-propped hydraulic fracturing in the Bulli Seam is the high vertical stresses that cause borehole breakout in horizontal holes drilled in coal. Borehole breakout effectively precludes the use of open hole straddle packers which are a convenient tool for placing multiple sand-propped hydraulic fractures in in-seam holes.

    Results of an initial six week trial undertaken at Douglas Project pit-bottom are described, which is aimed to developing the capability to install, grout and perforate casing so that straddle packers can be used for sand-propped hydraulic fracturing in overstressed boreholes. The primary goals of the pitbottom trial at Douglas were to confirm that horizontal boreholes in Bulli coal at 500 m overburden depth are overstressed and unsuitable for use of open hole straddle packers, and to establish a method for installing, cementing and slotting casing so that straddle packers can be used to place hydraulic fractures. Both these goals were successfully achieved. Developing-Methods-for-Placing-Sand-Propped-Hydraulic-Fractures-for-Gas-Drainage-in-the-Bulli-Seam.pdf738 KB
  • Connectivity of Mining Induced Fractures Below Longwall Panels A Modelling Approach

    Gas make into active longwall panels is an important issue in ventilation and gas drainage design. A method of simulating the mining induced fracture network and associated increase in hydraulic conductivity is a necessity for improved mine design, hazard management planning and gas drainage efficiency. This paper identifies and illustrates the key components in determining the connectivity of lower gas sources to an active goaf. Computer modelling identifies the formation of cyclic fractures that form below the longwall face and extend down back below the goaf. These cyclic fractures form when the stress conditions are high enough and the strata properties allow for shear failure to extend down through the strata.

    The mining induced fracture formation and stress redistribution creates increased hydraulic conductivity of the floor strata below the active goaf. The stress redistribution and fracture volume also reduce the pore pressure below the goaf, allowing gas desorption to occur from lower seams. The combination of gas desorption and increased hydraulic conductivity allows gas connectivity from gas sources below the seam to the active goaf. A monitoring program at a NSW mine as part of ACARP Project C23009 allowed for preliminary validation of the concepts illustrated from the computer modelling. Preliminary field gas flow measurements are within the range of connectivity expectations based on rock failure modelling of longwall extraction. This report presents the first validation results for the modelling approach presented in this paper. Further results from ACARP Project C23009 on optimisation of gas drainage will follow in future publications. Gale-Heritage-Rippon-Connectivity-of-mining-induced-fractures-below-longwall-panels-A-Modelling-Approach.pdf1.3 MB
  • Statistical Analysis of Undeground Stress Measurements in Australian Coal Mines

    This paper presents a summary of 235 underground stress measurements conducted in the virgin ground of NSW and Queensland mines. The main objective of this study is to analyse the statistical information from the measurements that are relevant to strata control and mine planning with a view to estimate the risk involved with strata failure.

    Major findings include the statistical increase of maximum horizontal stress with depth in Queensland and NSW mines, a comparison of normalised lateral stress magnitudes and measurements in rock of a different stiffness, ‘Tectonic Factor’ concept, and maximum lateral stresses and their directions in NSW and Queensland coalfields. These findings can provide a valuable benchmark for mine planning and strata control with potential savings in mine operating costs. Gale-Mills-Bowen-Basin-2005-Statistical-Analysis-of-Undeground-Stress-Measurements-in-Australian-Coal-Mines-Final-JN.pdf2 MB
  • Using Helium as a Tracer Gas to Measure Vertical Overburden Conductivity Above Extraction Panels

    This paper investigates helium injection into the goaf as a tool to measure goaf to surface connectivity. Laboratory studies confirmed a relationship between gas velocity and fracture conductivity through helium injection. Field trials of helium injection into the goaf were successfully conducted to determine whether a connection exists between the surface and the goaf. A repeatable technique of borehole helium injection, with a borehole drilled into the highly permeable caved zone of the goaf, proved to demonstrate more quickly whether a connection to the surface exists. Heritage-Gale-2009-Helium.pdf281 KB
  • A Combined 2D and 3D Modelling Approach to Provide Adequate Roof Support in Complex 3D Excavations

    Traditional methods for assessing effective roof support can be difficult to apply to complex 3D excavations. Through worked examples, this paper illustrates the successful approach of combined 2D and 3D numerical modelling to understand the mechanisms of rock failure for unique excavation geometries. The modelling approach provides adequate roof support recommendations for complex 3D excavations in Australian coal mines. ICGCM-Heritage-Stemp-complex-3D-modelling.pdf2 MB
  • Impact of Longwall Width on Overburden Behaviour

    The longwall panels at Clarence Colliery have experienced intermittent sudden weightings on the face that have caused some production delays. These weightings have typically been more severe on the wider faces. A program of surface subsidence and extensometer monitoring was undertaken above Longwalls 4 and 5 to investigate the behaviour of the overburden strata during longwall extraction on two faces of different widths.

    The monitoring indicated that a dome shaped zone of large downward movement extends up into the overburden strata to a height equal to about the panel width. A major strata unit between 50 m and 70 m above the coal seam influences the behaviour of the overburden strata and may be a factor in the observed sudden loading of longwall face supporLo;. Downward movement of this major unit appears to concentrate on vertical fractures. Increased loading on the face supports could then be expected. The downward movement of this major unit appears to be more significant in the overburden behaviour above the 200 m wide longwall compared to the 160 m wide longwall face Impact-of-longwall-width-on-overburden-behaviour.pdf1.8 MB
  • Investigations Aimed to Improve Tailgate Serviceability at Dartbrook Mine

    Dartbrook Mine has experienced rib control difficulties because of deterioration in the tailgate corner of the longwall face as overburden depth has increased. This paper summarises an investigation to optimise support and develop strategies to improve the serviceability of the tailgate roadways. Field measurements undertaken in the tailgate of Longwall 6 identified roadway softening mechanisms, deformation characteristics and factors controlling deformation. This provides the basis for optimising the reinforcement system as part of an ongoing Strata Management Plan at the mine. Investigations-Aimed-to-Improve-Tailgate-Serviceability-at-Dartbrook-Mine.pdf397 KB
  • Methods of Interpreting Ground Stress Based on Underground Stress Measurements and Numerical Modelling

    This paper presents several new methods to help interpretation and understanding of ground stress. The methods are based on data from 239 stress measurements conducted in the virgin ground in NSW and Queensland mines and computational models simulating large scale faulted ground behaviour. The underground stress regime plays an important role in mining profitability and safety however, understanding of the stress tensor is often difficult due to its mathematical complexities and non-intuitive behaviour.

    The aim of this study is to explain stress distribution in faulted ground, its origin and propose several methods of stress interpretation. Major findings presented in this study include: increase of maximum horizontal stress with depth based on underground measurements and numerical simulation of faulted ground, affect of faults on ground stress, normalisation technique that allows comparison of lateral stress magnitudes in rock of different stiffness, ‘Strain Tectonic Factor’ concept and its value in understanding stress components and its affect on rock strength. Methods-of-Interpreting-Ground-Stress-Based-on-Underground-Stress-Measurements-and-Numerical-Modelling.pdf429 KB
  • Prediction of Stata Caving Characteristics and its Impact on Longwall Operation

    Recent advances in computer simulation together with field measurements of caving and microseismic activity about longwall panels, has allowed a much better understanding of the caving process and the variability due to geology. The joint research between SCT Operations and CSIRO Division of Exploration and Mining has initiated new methods of computational modelling predicting various caving patterns and strata failure far ahead of the longwall face.

    This work was validated by field measurements of caving and microseismic activity at the longwall face. The rock fracture distribution and the caving characteristics of a range of strata sections have been simulated by computer methods. Validation studies of the method were addressed together with case studies. The interaction of caving with support convergence and face control is presented. The method allows the simulation of longwall support behaviour under various geological conditions. The system also allows a prediction of the monitoring data, which is best suited to give an early warning of weighting events or signal various key caving characteristics. Prediction-of-stata-caving-characteristics-and-its-impact-on-longwall-operation.pdf2.9 MB
  • Remote High Resolution Stress Change Monitoring of Hydraulic Fractures - 2004

    This paper describes the use of strain gauge based borehole instruments to monitor stress changes associated with the creation and extension of hydraulic fractures in massive rock strata at Northparkes Mine in Australia and Salvador Mine in Chile. This work was conducted as part of the International Caving Study ICSII.

    These instruments proved very sensitive to the stress changes induced by the hydraulic fractures close to the fracture plane. Analysis of the stress changes observed allowed the fracture orientation and non-symmetric fracture growth to be constrained sufficiently that a clearer insight into fracture behaviour could be obtained at both sites, particularly when combined with other observations. Recognition of the elastic stress reorientation about an opening mode hydraulic fracture has proved to be an important element in the interpretation of stress change monitoring data.

    The nature of the stress reorientation is useful in discriminating between opening and shearing mode fracture growth. A technique of identifying a range of possible solutions of fracture orientation and non-symmetric fracture growth consistent with the stress changes observed on multiple instruments has been developed. Unique definition of fracture orientation from the stress change instruments is possible if the instruments are sufficiently distributed relative to the hydraulic fracture plane. Remote-High-Resolution-Stress-Change-Monitoring-of-Hydraulic-Fractures-KM-RJ.pdf1 MB
  • Review and Estimation of the Hydraulic Conductivity of the Overburden Above Longwall Panels. Experience from Australia.

    The aim of this paper is to summarise the results and conclusions of Australian Coal Association Research Project (ACARP) Report C13013 which relate to water inflows into a mine which occur through the overburden above and adjacent to longwall panels. The study assessed available data of inflows into underground coal mines and utilised computer simulation of water flow through fracture networks.

    The study concluded that flow into mines is typically via an interconnected network of pre existing and mining induced fractures. The height above the coal seam that mining induced fractures extend is typically related to the width of the panel. However the potential for those fractures to form a connected network which can facilitate flow, is related to the amount of subsidence and the depth of mining.

    The study compares model simulations with measured data and provides guidelines to estimate the average hydraulic conductivity of the overburden above extracted longwall panels in Australia. Review-and-Estimation-of-the-Hydraulic-Conductivity-of-the-Overburden-Above-Longwall-Panels.-Experience-from-Australia..pdf952 KB
  • Successful Use of a Stress Relief Roadway at Appin Colliery

    High horizontal stress levels can lead to extensive roadway deformation requiring expensive secondary support to ensure stability; this is particularly the case with longwall installation faces. Longwall installation roadways are a critical construction within coal mines. The use of a purpose built ‘Stress Relief Roadway’ to minimise roof deformation in the nearby longwall installation roadway, by reducing stress impacts has been undertaken at Appin Colliery – BHP Billiton Illawarra Coal. Its use led to significant cost and operational benefits. This paper outlines the process used; from identifying horizontal stress as an issue, as well as generating computer models through the various options and culminating in ground monitoring of the constructed roadways to the successful start of the longwall panel. Successful-Use-of-a-Stress-Relief-Roadway-at-Appin-Colliery.pdf581 KB
  • The Application of Field and Computer Methods for Pillar Design in Weak Ground - WG

    This paper describes the use of strain gauge based borehole instruments to monitor stress changes associated with the creation and extension of hydraulic fractures in massive rock strata at Northparkes Mine in Australia and Salvador Mine in Chile.

    This work was conducted as part of the International Caving Study ICSII. These instruments proved very sensitive to the stress changes induced by the hydraulic fractures close to the fracture plane. Analysis of the stress changes observed allowed the fracture orientation and non-symmetric fracture growth to be constrained sufficiently that a clearer insight into fracture behaviour could be obtained at both sites, particularly when combined with other observations. Recognition of the elastic stress reorientation about an opening mode hydraulic fracture has proved to be an important element in the interpretation of stress change monitoring data.

    The nature of the stress reorientation is useful in discriminating between opening and shearing mode fracture growth. A technique of identifying a range of possible solutions of fracture orientation and non-symmetric fracture growth consistent with the stress changes observed on multiple instruments has been developed. Unique definition of fracture orientation from the stress change instruments is possible if the instruments are sufficiently distributed relative to the hydraulic fracture plane. The-Application-of-Field-and-Computer-Methods-for-Pillar-Design-in-Weak-Ground-WG.pdf2.4 MB
Sign up for the latest white papers and product news