SCT Operations (Strata Control Technology)
  • ROCK FRACTURE & HYDRAULIC CONDUCTIVITY
  • Winton Gale

Welcome to SCT's own publications library which contains a collection of recent publications and other resources with reliable research about our technology. 

  • The Role of Gas Pressure in Coal Bursts Winton Gale 2018

    Rock and coal fractures and micro seismic vibration are common occurrences during development mining. It is very uncommon for coal and rock to be propelled into the roadway during normal mining operations. However, such occurrences do occur and appear to require significantly more energy than is available from strain energy release during coal cutting. The sources of energy, which can contribute to the propulsion of coal from the face or ribs, are typically strain energy from the surrounding ground, seismic energy from a rapid rupture of the ground in the vicinity, or rapid expansion of gas from within the burst source area.

    The aim of this paper is to briefly review the bursts that could be related to strain energy or seismic energy. However, the greatest emphasis is placed on the effect that gas within the coal could play in moderate to gassy mines.

    It has been found that the bursts related to the expansion of gas can occur in coal and stone. The volume of gas involved in coal bursts is typically lower than in gas outbursts; however, the process is generally similar. The-Role-of-Gas-Pressure-in-Coal-Bursts-Winton-Gale-2018.pdf4.2 MB
  • Connectivity of Mining Induced Fractures Below Longwall Panels A Modelling Approach - Yvette Heritage - Winton Gale - Adrian Rippon

    Gas make into active longwall panels is an important issue in ventilation and gas drainage design. A method of simulating the mining induced fracture network and associated increase in hydraulic conductivity is a necessity for improved mine design, hazard management planning and gas drainage efficiency. This paper identifies and illustrates the key components in determining the connectivity of lower gas sources to an active goaf. Computer modelling identifies the formation of cyclic fractures that form below the longwall face and extend down back below the goaf. These cyclic fractures form when the stress conditions are high enough and the strata properties allow for shear failure to extend down through the strata.

    The mining induced fracture formation and stress redistribution creates increased hydraulic conductivity of the floor strata below the active goaf. The stress redistribution and fracture volume also reduce the pore pressure below the goaf, allowing gas desorption to occur from lower seams. The combination of gas desorption and increased hydraulic conductivity allows gas connectivity from gas sources below the seam to the active goaf. A monitoring program at a NSW mine as part of ACARP Project C23009 allowed for preliminary validation of the concepts illustrated from the computer modelling. Preliminary field gas flow measurements are within the range of connectivity expectations based on rock failure modelling of longwall extraction. This report presents the first validation results for the modelling approach presented in this paper. Further results from ACARP Project C23009 on optimisation of gas drainage will follow in future publications. Connectivity-of-mining-induced-fractures-below-longwall-panels-A-Modelling-Approach-Y.Heritage-W.Gale-A.Rippon-2017.pdf1.3 MB
  • Analytical Procedure to Estimate the Horizontal Anisotropy of Hydraulic Conductivity in Coal Seams - Winton Gale - Mahdi Zoorabadi

    The horizontal hydraulic conductivity anisotropy of coal seams is a controlling parameter for designing gas drainage boreholes. The ratio between the maximum and minimum horizontal hydraulic conductivity (RkH-kh) and the orientation of maximum horizontal conductivity defines this anisotropy in horizontal plane.

    This paper presents a new analytical procedure based on the field stress data and geometrical properties of coal cleats to calculate these two parameters. The application of this procedure for a real case in Eastern of Australia resulted in an average ratio of 20.9 for RkH-kh and orientation of NE for maximum horizontal conductivity. The comparison between these results with the measured values validated the accuracy of proposed procedure to estimate the anisotropy of horizontal hydraulic conductivity of coal seams. Analytical-Procedure-to-Estimate-the-Horizontal-Anisotropy-of-Hydraulic-Conductivity-in-Coal-Seams-W.Gale-M.Zoorabadi-2015.pdf377 KB
  • Investigation into Abnormal Surface Subsidence Above Longwall Panel Southern Coalfield - Winton Gale

    The subsidence over a longwall panel at Tahmoor Mine in the Southern Coalfield of NSW, Australia, was found to be approximately twice the size it had been in previous measurements. An investigation into the potential causes was conducted using computer modeling together with hydrological characterization and detailed geotechnical characterization of the strata.

    The abnormal subsidence was found to be consistent with localized weathering of joint and bedding planes above a depressed water table adjacent to an incised gorge. The study showed that other factors such as variation in stress field, joint zones, variation
    in rock strength and topographic factors did have sufficient impact to induce the abnormal subsidence.

    The results have significant implications to subsidence prediction in areas that may be prone to the phenomenon found at Tahmoor. Key indicators of the potential for this form of abnormal subsidence are presented. Investigation-into-Abnormal-Surface-Subsidence-Above-LW-Panel-Southern-Coalfield-2011.pdf2.6 MB
  • Using Helium as a Tracer Gas to Measure Vertical Overburden Conductivity Above Extraction Panels - Yvette Heritage - Winton Gale

    This paper investigates helium injection into the goaf as a tool to measure goaf to surface connectivity. Laboratory studies confirmed a relationship between gas velocity and fracture conductivity through helium injection. Field trials of helium injection into the goaf were successfully conducted to determine whether a connection exists between the surface and the goaf. A repeatable technique of borehole helium injection, with a borehole drilled into the highly permeable caved zone of the goaf, proved to demonstrate more quickly whether a connection to the surface exists. Using-Helium-as-a-Tracer-Gas-to-Measure-Vertical-Overburden-Conductivity-Above-Extraction-Panels-Y.Heritage-W.Gale-2009.pdf281 KB
  • An Investigation into Underground Mine Interaction with Overlying Aquifers Huntly, East Mine, New Zealand - Winton Gale - Published 2006

    In recent years, Huntly East Mine has operated at a depth range of approximately 100 m to 220 m below a Quaternary aged clay, sand and silt aquifer that is connected to a nearby large river system (Waikato River). A key issue for mine planning and environmental management has been the development of mine design criteria to allow efficient mining of the reserves and to maintain the integrity of the aquifer.

    A case study and back analysis at Huntly East Mine is presented, which investigates the overburden conductivity and the impacts caused by mining-induced caving. The case study includes: i. computer modelling of the mine geometry, caving and overburden fracture networks created; ii. field investigation to develop an engineering geological model of the overburden within the goaf to validate the goaf geometry as defined by the computer generated model; iii. in situ field measurement of overburden conductivity in the pre- and post-mining condition; iv. interference testing across the goaf to determine the level of interconnectivity; and v. measured water pressure profiles above the mine. An-Investigation-into-Underground-Mine-Interaction-with-Overlying-Aquifers-Huntly-East-Mine-New-Zealand-W.Gale.pdf822 KB
  • Water Inflow Issues above Longwall Panels - Winton Gale - published 2006

    The aim of this paper is to discuss the issues which relate to surface water inflow through the fractured overburden above longwall panels. The information used is a combination of field experience and computer modeling. Computer models used in this study simulate the fracture process in the geological units throughout the overburden. Analysis of the mining induced fracture patterns and in situ joint patterns allows an estimation of the hydraulic conductivity within the overburden. The cubic flow relationship has been used in examples presented. Water-Inflow-Issues-above-Longwall-Panels-W.Gale.pdf267 KB
  • Application of Computer Modelling in the Understanding of Caving and Induced Hydraulic Conudctivity About Longwall Panels - Winton Gale - Published 2005

    Computer modelling is being used to simulate rock fracture, caving and stress redistribution about longwall panels with increasing confidence. The models are being assessed against field monitoring and have significantly increased the understanding of caving mechanics within the overburden. This paper discusses the modelling approach and provides some examples of its application to overburden damage and induced hydraulic conductivity. Computer models used in this study simulate the fracture process in the geological units throughout the overburden. Analysis of the mining induced fracture patterns and in situ joint patterns allows an estimation of the hydraulic conductivity within the overburden. The cubic flow relationship has been used in the examples presented. Application-of-Computer-Modelling-in-the-Understanding-of-Caving-and-Induced-Hydraulic-Conudctivity-About-Longwall-Panels-W.Gale.pdf271 KB
  • Computer Simulation of Ground Behaviour and Rock Bolt Interaction at Emerald Mine - Winton Gale - Published 2004

    A collaborative project between RAG Emerald Mine, NIOSH, and SCT Operations was conducted to investigate ground behaviour, reinforcement performance, and stress redistribution in a coal mine entry subjected to a severe horizontal stress concentration. Field measurements indicated that the stresses applied to the study site nearly doubled during longwall mining, resulting in roof deformations extending to a height of 4.8 m (16 ft) above the entry.

    This paper focuses on the computer simulation that was undertaken to provide more insight into the roof behaviour and rock bolt interaction during mining. The model’s input rock properties were derived from extensive laboratory testing, and the model itself simulated a broad range of failure mechanisms. The effects of different bolt patterns on roadway behaviour were evaluated. Comparison between the model results and the field measurements indicated that that the model effectively simulated the critical elements of the actual roadway’s behaviour. With the confidence gained, the model was used as a baseline for additional simulations that evaluated the expected performance of alternative roof support systems. The study will also provide a benchmark data set for future applications of numerical modelling to U.S. coal underground mining. Computer-Simulation-of-Ground-Behaviour-and-Rock-Bolt-Interaction-at-Emerald-Mine-Winton-Gale.pdf697 KB
  • Review and Estimation of the Hydraulic Conductivity of the Overburden Above Longwall Panels. Experience from Australia - Winton Gale

    The aim of this paper is to summarise the results and conclusions of Australian Coal Association Research Project (ACARP) Report C13013 which relate to water inflows into a mine which occur through the overburden above and adjacent to longwall panels. The study assessed available data of inflows into underground coal mines and utilised computer simulation of water flow through fracture networks.

    The study concluded that flow into mines is typically via an interconnected network of pre existing and mining induced fractures. The height above the coal seam that mining induced fractures extend is typically related to the width of the panel. However the potential for those fractures to form a connected network which can facilitate flow, is related to the amount of subsidence and the depth of mining. The study compares model simulations with measured data and provides guidelines to estimate the average hydraulic conductivity of the overburden above extracted longwall panels in Australia. Review-and-Estimation-of-the-Hydraulic-Conductivity-of-the-Overburden-Above-Longwall-Panels.-Experience-from-Australia-W.Gale.pdf952 KB
  • Rock Damage Characterisation from Microseismic Monitoring - Winton Gale

    This paper outlines the concepts used to correlate rock failure with microseismic events and presents examples of microseismic monitoring together with associated computer modelling of the rock failure. This study is motivated by the need to develop improved ways to reduce ground control hazards in underground mining. Toward this end we present and compare results from numerical modelling and microseismic monitoring studies conducted at several different mine sites. Emphasis is on integrating results obtained with these tools to characterize, and thus increase our understanding of, important mine deformation processes. The ultimate goal is to use this knowledge to design mine structures, and develop mitigation
    measures, that minimize specific ground control hazards. Rock-Damage-Characterisation-from-Microseismic-Monitoring-W.Gale.pdf700 KB
  • Estimation of the Hydraulic Conductivity of the Overburden above Longwall Panels in Coal Mines - Winton Gale

    The aim of this paper is to summarise and update the results of Australian Coal Association Research Project (ACARP) Report C13013 which relate to water inflows into a mine which occur through the overburden above and adjacent to longwall panels. The study assessed available data of inflows into underground coal mines and utilised computer simulation of water flow through fracture networks. The study concluded that flow into mines is typically via an interconnected network of pre-existing and mining induced fractures. The height above the coal seam that mining induced fractures extend is typically related to the width of the panel and the thickness of the coal extracted. However the potential for those fractures to form a connected network which can facilitate flow, is related to the amount of subsidence and the depth of mining. The study compares model simulations with measured data and provides guidelines to estimate the average hydraulic conductivity of the overburden above extracted longwall panels in Australia. Estimation-of-the-Hydraulic-Conductivity-of-the-Overburden-above-Longwall-Panels-in-Coal-Mines-W.Gale.pdf979 KB
  • Rock Fracture Caving and Interaction of Face Supports Under Different Geological Environments. Experience from Australian Coal Mines - Winton Gale

    This paper is presents a summary of recent investigations into fracture and caving about longwall panels. The results of these investigations indicate that rock failure initiates well ahead of the longwall face. Rock fracture typically forms in response failure through the material and bedding planes. Tensile fractures also form in massive units. These fracture patterns typically create a fracture network which determines the caving characteristics encountered at the faceline. The action of longwall face supports under such conditions is to maintain confinement to the fractured ground and develop a consistent caving line. The confinement developed above the canopy under these conditions can be variable on a shear by shear basis and the operational face support procedures play an important role in stability about the face area. Rock-Fracture-Caving-and-Interaction-of-Face-Supports-Under-Different-Geological-Environments.-Experience-from-Australian-Coal-Mines-W-Gale.pdf2 MB
Sign up for Research, Project and Product Updates