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ABSTRACT: In this paper, the problem of a penny-shaped hydraulic fracture propagating parallel to the free-
surface of an elastic half-space is studied. The fracture is driven by an incompressible Newtonian �uid injected
at a constant rate. The �ow of viscous �uid in the fracture is governed by the lubrication equation, while the
crack opening and the �uid pressure are related by singular integral equations. We construct two asymptotic
solutions based on the assumption that the energy expended in the creation of new fracture surfaces is either
small or large compared to the energy dissipated in viscous �ow. One important outcome of the analysis is to
show that the asymptotic solutions, when properly scaled, depend only on the dimensionless parameter �, the
ratio of the fracture radius over the distance from the fracture to the free-surface. The scaled solutions can thus
be tabulated and the dependence of the solution on time can be retrieved for speci�c parameters, through simple
scaling and by solving an implicit equation.

1 INTRODUCTION

Hydraulic fracturing is the most common method used
to stimulate production from gas and oil wells. The
fractures are propagated from the well to stimulate
reservoirs that are typically located 500 to several thou-
sand meters below the surface. Hydraulic fracture
growth at these depths is not affected by the surface of
the earth, although surface deformation (tilt) is some-
times measured to infer fracture orientation and size.

Although most fractures arising from hydraulic frac-
ture treatments can be conceptualized as propagating
within an in�nite space, there are speci�c cases where
the in�uence of a free-surface on the fracture growth
becomes signi�cant or even dominant. Hydraulic frac-
turing has recently been used in mining to induce and
control the timing of rock caving event, see Jeffrey
& Mills (2000). The work contained in this paper is
motivated by hydraulic fracturig used underground at
Moonee Colliery to control the timing of roof-rock
caving events. At Moonee, a massive conglomerate
roof rock does not cave behind the longwall face in
a predictable way and, when it does cave, produces a
strong windblast in the nearby mine workings. Moonee
has adopted hydraulic fracturing as a way to induce
the conglomerate to cave in a controlled time period.
The hydraulic fractures are formed at the end of 8 m
long vertical holes drilled up into the conglomerate, as
shown in Fig. 1. The treatments produce more or less
axisymmetric horizontal fractures that grow parallel
to and strongly affected by the free surface. Fracture
behaviors are characterized by a ratio of the fracture

radius over the distance from the free surface which
can reach order 1 or more. (See, also, Pollard & Ho-
zlhausen (1979) for a granite quarry example.)

The problem of predicting the �uid pressure, open-
ing and size of the fracture given the injection rate,
�uid rheology, and rock properties has attracted an ex-
traordinary number of contributions since the 1950s.
This intense research activity has contributed to the
formulation of a variety of models that emphasize ei-
ther the design of a hydraulic fracturing treatment, or
the exact solution of the coupled �uid-solid problem
with simple fracture geometry (Savitski & Detournay
2000). However, the in�uence of a free-surface on
the propagation of a �uid-driven fracture has not yet
been addressed, except approximately (Jeffrey & Set-
tari, 2000) and by a few contributions dealing with the
problem of a uniformly pressurized fracture(Wang et
al. 1994).

We analyze the problem of a penny-shaped hy-
draulic fracture propagating at a constant distance H
from the free-surface of an elastic half-space, see Fig.
1. The fracture is driven by injection of an incom-
pressible, Newtonian �uid at a constant volumetric
rate Qo from a point source. (The borehole sketched
in Fig. 1 to inject �uid is assumed to have zero ra-
dius in the subsequent analysis.) The half-space is
prestressed with a lateral uniform compressive stress
� r � �� o and an axial stress � z � �z , where � � 0
or �� – with � denoting the unit weight of the ma-
terial – depending on the orientation of the half-space
and whether or not gravity needs to be accounted for
in the analysis.
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Figure 1: Penny-shaped hydraulic fracture propagating
parallel to the free-surface of an elastic half-space

The objective of this paper is to present solutions
for predicting the evolution of the fracture radius R
with time, as well as the dependence of the opening
�, and net pressure p � p f � �H upon the radial
distance r and time t . In particular, we are interested
in mapping the dependence of the solution on the in-
jection rate Qo and on the three material parameters
��, E �, K � de�ned as
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where� is the �uid viscosity, E and � the rock Young’s
modulus and Poisson’s ratio, and KI c the rock frac-
ture toughness. For the sake of convenience, ��, E �,
and K � will simply be referred to as viscosity, elastic
modulus, and toughness, respectively.

In this paper, we only consider the problem of ob-
taining solutions for the two limiting cases of viscosity-
and toughness-dominated fracture growth. In the
viscosity-dominated regime, the energy expended in
the creation of new fracture surfaces in the rock is
small compared to the energy dissipated in viscous
�ow� in the toughness-dominated regime, the viscous
dissipation is small compared to the energy dissipated
at the crack tip (Detournay 1999) . So in the viscosity-
dominated regime, the solution is independent of the
toughness K �, while in the toughness-dominated regime
the solution is independent of the viscosity ��.

An important restriction of the analysis reported
here stems from the assumption that the fracture re-
mains parallel to the free-surface. In fact, the fracture
will eventually curve towards the free-surface as the
mode II stress intensity factor K I I is non-zero for a
planar fracture if � � R	H 
 0. However, the solu-
tions developed here is valid in the asymptotic sense
when the main parameter controlling the curving of
the fracture, � � KIc	� o

�
H (if � � 0), is small

(Detournay et al. 2001).
The paper is organized as follows. First, we de-

scribe the mathematical formulation of this problem,
in particular the elasticity component which is based
on singular integral equations. Next, we reformulate
the equations using a viscosity-scaling appropriate for
“small” toughness and a toughness-scaling for “small”

viscosity. Then we construct the zero-toughness and
large toughness asymptotic solutions, and conclude
with a presentation of an example from inducing cav-
ing at Moonee Colliery.

2 PROBLEM FORMULATION

2.1 Elasticity

A non-local elasticity relation exists between the frac-
ture opening ��r� t
 and the net pressure p�r� t
. By
reference to Fig. 1, it is convenient to introduce the
normal and shear displacement discontinuities, Dn and
Ds , which correspond here to

Dn � [uz] � u�z � u�z (2)

Ds � [ur ] � u�r � u�r (3)

where the superscript � and � refers to the upper and
lower surface of the fracture, respectively. Obviously,
the fracture opening� is equal to the normal displace-
ment discontinuity Dn� The lack of opening symmetry
caused by the presence of a free surface is responsible
for the existence of a shear displacement discontinuity
Ds .

Using the singular solutions for displacement dis-
continuity loops, two singular integral equations can
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The �rst equation simply expresses that the normal
stress across the fracture plane, induced by a distribu-
tion of normal and shear displacement discontinuities
is equal to the net pressure (to a minus sign), while the
second equation satis�es the condition of zero shear
stress on the fracture wall. The in�uence functions
G�s are hypersingular as they contain the strong sin-
gularity �r � s
�2� also they depend only on the geo-
metric parameter � � R	H , but not on the elastic
constants of the half-space, see Zhang et al. (2000)
for details. Note that the dependence of Dn and Ds on
time t is strictly via the loading p�r� t
.

In principle, (5) can be inverted to yield

Ds � ��Dn��	 (6)

where � is a linear operator. In view of (6), the �rst
integral equation (4) can thus be rewritten as

�
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R
��

�
� p
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where � is linear functional (also, � has been sub-
stituted to Dn). Equation (7) expresses the non-local
relationship between the fracture opening � and the
net pressure p.

There are two numerical methods to solve these
integral equations: the displacement discontinuity
method (DDM) to solve (4)-(5) based on approximat-
ing the continuous function � � Dn by a piecewise
constant function, and the Chebyshev polynomial
method (CPM) due to Erdogan et al (1973) based on
approximating the regular function hn�r
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in which dn is the slope of discontinuities, by a trun-
cated series of orthogonal polynomials. The �rst
method is more �exible (it is used in conjunction with
the lubrication equation), but the second provides more
accurate results for the same number of degrees of
freedom, in particular in the evaluation of the stress
intensity factors KI and KII.

2.2 Lubrication

The equation governing the �ow of viscous �uid in the
fracture is the non-linear Reynolds differential equa-
tion from lubrication theory
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which is obtained by eliminating the �ow rate q be-
tween Poiseuille law

q � ��
3

��
�p

�r
(10)

and the continuity equation for an impermeable solid
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In this analysis, the fracture is completely �lled
by the fracturing �uid, i.e. there is no lag between
the �uid front and the fracture tip. This assumption
is responsible for the existence of a singularity in the
�uid pressure at the tip of the propagating fracture.
For an impermeable elastic solid with zero toughness,
the �uid pressure is characterized by a cube root sin-
gularity (Desroches et al. 1994) . The cube root sin-
gularity can be understood as an intermediate asymp-
tote, which re�ects in general a situation where the
energy expended in the creation of new fracture sur-
faces is small compared to the energy dissipated in
viscous �ow (Detournay,1999) .

2.3 Boundary Conditions and Initial Conditions

The problem is completely formulated with the ad-
dition of a propagation criterion and boundary condi-
tions at the fracture inlet r � 0 and at the tip r � R�t
.

The condition that the fracture is in mobile equilib-
rium, KI � K I c, can be expressed as

� 
 K �

E �
�R � r
1	2 R � r � R (12)

Besides the condition��R� t
 � 0 which is obviously
implied by the opening asymptote (12), the boundary
conditions consist of

q�R� t
 � 0 and 2� lim
r�0

rq � Qo (13)

It follows from the above equation, that q 
 O�1	r

near the source and thus that p 
 � ln r . Alterna-
tively, the source can be taken into account by the
global continuity equation

2�
� R

0
r �dr � Qot (14)

The initial conditions for this problem are actu-
ally given by the solution for the full-space, as we
do not analyze the early episode of the fracture life
when it initiates and propagates from the wellbore. By
disregarding fracture initiation from the wellbore, the
depth H is the only characteristic length entering the
description of this problem. Hence, the initial condi-
tions correspond in the limit � � 0, i.e. to the solu-
tion of a penny-shaped fracture in full-space. For the
two limiting solutions considered in this analysis, the
zero-toughness and the zero-viscosity solutions, the
initial solutions � � 0 are in fact self-similar and are
characterized by a power law dependence on time t
(Savitski & Detournay, 2001).

3 SCALING AND TWO LIMITING SOLUTIONS

3.1 Solution of diffusion equation

The scaling method follows Detournay(2001) and Sav-
itski & Detournay (2001) for the case � � 0� First,
we express the crack opening ��r� t
 and the net pres-
sure p�r� t
 as

� � ��t
L�t
�����
 p � ��t
E ������
 (15)

where the scaled opening � and pressure � are func-
tion of the spatial coordinate � � r	R�t
 and the
evolution parameter �, both dimensionless variables.
Furthermore, ��t
 is a small dimensionless parameter
and L�t
 a length scale of the same order as the frac-
ture radius R�t
. The two lengths R�t
 and L�t
 are
related by

R�t
 � � ��
L�t
 (16)

where the length factor � is de�ned by
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The governing equations can readily be rewritten
in terms of the new variables, after noting that the
derivative terms in the lubrication equation (9) can be
expressed in terms of � and �
�
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where the prime denotes differentiation with respect
to �, and the dot differentiation with respect to t .
Hence,

� elasticity
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� propagation criterion
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Consider now the viscosity-scaling, denoted by the
subscript �. The small parameter �� is deduced by
imposing that the viscosity does not appear in the lu-
brication equation (20). The explicit dependence of
the length scale L� on time t then follows from the
global mass balance (21). Hence,
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The lubrication equation simpli�es therefore to
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The dimensionless toughness ��t
 can now be de�ned
as

� � K �
�

t2
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o E �13

�1	18

(25)

so that the propagation criterion in terms of the open-
ing tip asymptote (22) becomes

�� � �� 1	2
� �1� �
1	2 � 1� � � 1 (26)

In the toughness-scaling (denoted by the subscript
�), the small parameter �� is de�ned by requiring that
there are no toughness parameters left in the propaga-
tion criterion (22)

�� � � 1	2
� �1� �
1	2 � 1� � � 1 (27)

Taking into account the �uid mass balance (21) yields
the explicit power law dependence of both �� and L�
on time t
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It is also natural to introduce a dimensionless viscosity
��t
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so that the lubrication equation (20) can now be rewrit-
ten as
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3.2 Zero-Toughness solution (K � 0)

We �rst discuss the construction of the zero-toughness
solution ��0����
 � ���0���0� � �0	. (The sub-
script 0 following � is used to refer to the limiting
case � � 0.) The equations governing the quanti-
ties ��0���0� � �0 (i.e. elasticity, lubrication, propa-
gation criterion, and volume balance) are specialized
versions of (19), (24), (22), and (17), respectively
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��0	� �0��

� � ��0 (31)
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The particular form (32) of the lubrication equation
makes use of the following expression for the term
��t in (24)

��t � 4� �0�
9
�
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which is obtained by differentiating ��t
 � �E0��
LE�t

H

with respect to time t .
Together, (31)-(33) imply that the near-tip behav-

ior of the solution as given by Desroches et al. (1994)

��0 
 �1� �
2	3 ��0 
 � �1� �
�1	3 (36)

It must be emphasized that the above asymptotic be-
havior is built on the assumption that the �uid front
coincides with the fracture tip.

The solution ��0 of the system of equations (31)-
(34) does not depend on any parameters, other than
the independent variables ����
. The solution ��0
can be obtained by solving an evolution problem in �,
starting with the known self-similar solution at � � 0
(Savitski & Detournay, 2001). We choose to solve
this problem by modeling numerically the propaga-
tion of a penny-shaped fracture on a �xed-grid. This
approach takes advantage of an algorithm originally
devised by Savitski (2000) for the case � � 0, which
is based on the displacement discontinuity method to
solve the elasticity equation (31), and on an implicit
�nite difference scheme to solve the lubrication equa-
tion (32), see Savitski (2000) for details. The solution
for different � is characterized by increasing accu-
racy with 125 nodes grows linearly with � on a �xed
grid.

Once the function � �o��
 has been determined
numerically, the dependence of � on t is deduced by
solving the implicit equation

�
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which is derived from R�t
 � � �o��
L��t
 and the
de�nition � � R	H .

3.3 Zero-Viscosity solution (M � 0)

We now focus on computing the zero-viscosity solu-
tion ��0 � ���0���0� � �0	, where the subscript 0
following � is here used to refer to the limiting case
for � � 0. The solution ��0, like ��0, does not de-
pend on any parameters other than ����
. For this
limiting case, the lubrication equation (30) degener-
ates into

��3
�0�

�
�0 � 0 (38)

which indicates that the net pressure ��0 is uniform�
hence ��0 � ��0��
. The set of governing equa-
tions simplify therefore to

� � ���0��
� � ��0 (39)

2�� 3
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0
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lim
��1

�1� �
�1	2 �
1	2
�0
���0 � 1 (41)

where it was found convenient to de�ne ���0 � �C0
� C0

.
The method used to calculate the solution ��0����

takes advantage of the linearity of the governing equa-
tions when � � 0. Thus, we introduce the crack
opening������
 corresponding to a unit pressure in
the fracture, i.e., ������	 � 1, and the correspond-
ing length factor � ���


2�� 3�
� 1

0
���d� � 1 (42)

Also, we de�ne the stress intensity factor K���
 such
that�� 
 K� �1� �
1	2 near the tip � � 1. It follows
from these de�nitions that

���0 � ��0��
������
� � �0 � ��1	3
�0 � � (43)

Finally, the net pressure ��0��
 is computed from
the propagation criterion (41), by substituting ���0 and
� �0 in (43)
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�
� �K 2�

��3	5
(44)

It then follows that
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� 3�K�

�2	5
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�
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�1	5
����
 (45)

Calculation of the crack aperture �� is carried out
using either the Chebyshev polynomial method (Er-
dogan et al. 1973) or the displacement discontinuity
method (Crouch & Star�eld, 1983). The shape factor
� � is then computed according to (42) and the stress
intensity factor K� from the asymptotics of ��. Once
the function � �0��
 has been determined, the depen-
dence of � on t is deduced in the same way as zero-
toughness cases. Note �nally that the solution ��0 in
the limit � � 0 is given by Savitski (2000)
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4 RESULTS FOR NORMALIZED PARAMETERS

The variation with� of the volumetric factors � �0��

and � �0��
, maximum opening ��o�0��
 and
��o�0��
 and net pressure ��o��
 is illustrated in
Figs 2-4. These �gures show not only the numerical
results for speci�c values of � but also the best-�t
polynomials F��
 � 
i�n

i�0 ai�i that can be used to
interpolate the results. The coef�cients ai of the best-
�t polynomials can be found in Table 1. Figures 2-3
indicate that with increasing � the fracture become
shorter and wider, in relative terms compared to the
deep crack solution (� � 0). Figure 4 shows that a
smaller pressure, compared to the case � � 0 is re-
quired to drive the fracture in the zero-viscosity limit.



Figure 2: Variation of volumetric factor � �o and � �o with
R. The symbols correspond to numerical results, and the
curves to a best-�t polynomial

Figure 3: Variation of opening ��o and ��o at the frac-
ture center with R. The symbols correspond to numerical
results, and the curves to a best-�t polynomial

Figure 4: Variation of the uniform pressure ��o with R.
The symbols correspond to numerical results, and the curve
to a best-�t polynomial

Table 1: Coef�cients of �tting curves for non-
dimensional parameters

�
Co �Co �Co �

Eo �Eo

a0 0.852 0.299 0.659 0.693 1.740
a1�101 0.297 0.272 -0.912 0.174 -2.014
a2�101 -0.610 -0.156 0.1675 -0.266 2.836
a3�102 1.509 11.34 -2.741 0.623 -3.843
a4�103 -1.649 -44.87 2.671 -0.708 2.582
a5�105 8.078 1124 -13.09 4.008 -4.006
a6�106 -1.323 -1860 2.392 -0.896 -2.045
a7�104 2.033
a8�105 -1.409
a9�107 5.611
a10�109 -9.752

Table 2: Coef�cients of the best-�t polynomials for
�1
�o, �2

�o, and �3
�o

�1
Eo �2

Eo �3
Eo

a0 0�74052 0�98882 0�87424
a1 0�95563 0�62105 0�89508
a2 �1�45075 �1�1842 �1�49911
a3 0�89298 0�73728 0�93627
a4 �0�33648 �0�26871 �0�34275

a5�102 8�50119 6�39297 8�0854
a6�102 �1�46577 �1�01733 �1�25927
a7�103 1�6963 1�06972 1�284157
a8�104 �1�2556 �0�71034 �0�82323
a9�106 5�3535 2�68703 3�0052
a10�108 �9�9755 �4�3944 �4�7584

5 APPLICATIONS

The evolution with time of the fracture radius, maxi-
mum crack opening, and pressure at the wellbore can
be determined for speci�c parameters, simply by scal-
ing the theoretical solutions derived for the viscosity-
dominated and toughness-dominated regime of solu-
tion. There is a dif�culty, however, in predicting the
wellbore pressure for the zero-viscosity solution, not
only because the �xed well radius a corresponds to
varying � � a	R�t
 as the fracture propagates, but
also because of the logarithmic singularity of the pres-
sure at the center. In contrast, the opening is nearly
constant for � � 0�05 and it is therefore legitimate to
adopt��0
 for the fracture opening at the well as long
as a	R�t
 � 0�05.

As a pragmatic solution, the pressure at the well is
interpolated from ��0����
 evaluated at � � 0�01,
0�00278 and 0�001. (These three functions, denoted
respectively as�1

�o,�2
�o, and�3

�o are plotted in Fig.
5 with the coef�cients of the best-�t polynomials listed
in Table 2.

As an example consider the following parameters:
E � 20 GPa, � � 0�28 (giving E � � 21�7 GPa),
KI c � 1�5 MPa

�
m� H � 9 m� Qo � 0�360 m3/min,



Figure 5: Plot of ��o vs R for the zero-toughness cases.
The scatter points are adopted from the DDM results and
the solid line is the �tting curve.
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Figure 6: Variation of the fracture radius R with time for
the two viscosity cases: � � 0�2 Pa�s (small dash) and
� � 0�001 Pa�s (long dash).

� � 0�2, 0�001 Pa�s (high and low viscosity fracturing
�uid referred to as ZT-1 and ZT-2, respectively, on the
following plots). The radius of the borehole is 25 mm
(this is used to calculate the inlet pressure). Evolution
of the fracture radius, as well as the net pressure and
the fracture opening at the well are show in Figs. 6, 7
and 8 for both the zero-viscosity and zero-toughness
bounds. The effect of the �uid viscosity on the zero-
toughness solution can be observed in these �gures.
At any given time, the high viscosity case is charac-
terized by a smaller fracture radius, but a larger net
pressure and wider opening compared to the low vis-
cosity case.

6 CONCLUSIONS

In this paper, we have derived two asymptotic solu-
tions for a penny-shaped hydraulic fracture propagat-
ing parallel to the free-surface of an elastic half-space.
The fracture is driven by an incompressible Newtonian
�uid injected at a constant rate at the center of the
fracture. The two limiting solutions are constructed

Figure 7: Variation of the net pressure with time for the
two viscosity cases: � � 0�2 Pa�s (small dash) and � �
0�001 Pa�s (long dash).

Figure 8: Variation of the fracture opening at the well with
time, for the two viscosity cases: � � 0�2 Pa�s (small
dash) and � � 0�001 Pa�s (long dash).

on the assumption that either the solid has no tough-
ness or that the �uid has no viscosity. One important
outcome of the analysis is demonstrating that the as-
ymptotic solutions depend only on the dimensionless
parameter �, when properly scaled. The scaled solu-
tion can thus be tabulated once and for all. The depen-
dence of the solution on time can be retrieved for spe-
ci�c parameters, through simple scaling and by solv-
ing an implicit equation such as ��0�t
� �0��
 � �
for the zero toughness case (and a similar one for the
zero viscosity case).

One speci�c case is studied with material para-
meters and geometry similar to real caving events at
Moonee, but without considering �uid loss which is
known to be important in this application. The vari-
ations of the crack radius, the inlet pressure and the
crack opening are presented. The varing trends with
time in crack radius amd pressure are consistent in
trend with the measured ones in situ. Detailed com-
parison between theoretical prediction and experimen-
tal observations are given by Jeffrey et al. (2001).
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